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Time-decreasing hazard and increasing time until the next earthquake
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The existence of a slowly always decreasing probability density for the recurrence times of earthquakes in
the stationary case implies that the occurrence of an event at a given instant becomes more unlikely as time
since the previous event increases. Consequently, the expected waiting time to the next earthquake increases
with the elapsed time, that is, the event moves away fast to the future. We have found direct empirical evidence
of this counterintuitive behavior in two worldwide catalogs as well as in diverse regional catalogs. Universal
scaling functions describe the phenomenon well.
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Many probability distributions have been proposed to ac-behavior on the time evolution of the seismic hazard and on
count for the recurrence time of earthquakés5], which is  the expected residual time to the next earthquake. We ana-
the time interval between successive earthquakes in a certalyze many regions and magnitude-threshold values from two
region. Using a procedure similar to that of Batkal, where ~ worldwide catalogs[the NEIC-PDE and the Significant
aftershocks and mainshocks are considered together as a p&arthquake Database from NOAA at the National Earth-
of essentially one unique procef-9], but looking at the quake Information CentgNEIC) [14]] and from several re-
recurrence times in a single region rather than at a mixture ogional cataloggSouthern California, Japan, New Zealand,
different subregions and taking care about the temporal hefNew Madrid (USA), the Iberian Peninsula, and the British
erogeneities of seismicity, we have determined that a universles[15]]. Each analyzed region is delimited by two merid-
sal scaling law describes the probability dengityr) of the  ians and two parallel§l6], with linear size spanning from
recurrence timg10,11. In this way, for events of magnitude 0.16° (about 18 km to the whole globe(~20x 10° km),

M above a certain thresholtil, in a given spatial area covering a large variety of tectonic environments, whereas
(whose limits do not need to depend on the tectonic backthe considered magnitudes range from larger than 1.5 to
ground, D(7) scales with the rate of seismic activigin the  larger than 7.5this is about a factor 0in the minimum
area as released energy
Except for a 360% 180° region, which covers the en-

D(7) =Rf(R7), tire globe, the rest of the regions are defined by a window
whereR is defined as the mean number of earthquaketh of L degrees in longitude ant degrees in latitude. The
M =M,) per unit time, and is considered to be independenfoordinatesix,y) of the west-south corner of these regions
of time, in principle(in other words, we study the case of can be obtained from the vecttx,,ky) in Fig. 1's labels as
stationary seismic activity12]). The previous scaling is in = X=Xmint KL, Y=Ymint KL, With (Xin, Ymin) =(=180°, =909,
fact the hallmark of the self-similarity of seismicity in the (=123°, 309, (127°, 279, (160°, —60°, (—91°, 359,
space-time-magnitude domain. Interestingly, note that the ef-—20°, 309, and(—10°, 459 for the worldwide, Southern
fect of raising the thresholil. and a subsequent rescaling of California, Japan, New Zealand, New Madrid, Iberian Pen-

rwith R is analogous to a renormalization-group transformadnsula, and British Isles catalogs, respectively. The periods of
tion [13]. study arg(in yearsA.D. including the last onel973-2002 for

The functionf is a universal scaling function, and among the NEIC catalog, 1897-1970 for the NOAA one, 1988-
several possible choices, the best fit is obtained fratnua- 1991, 1995-1998, and 1984-2001 for Southern California

cated gamma distribution, (denoted as SC88, SC95, and SE;&hd 1995-1998, 1996—
1y 2001, 1975-2002, 1993-1997, and 1991-2001, for the rest

f(6) = _c (9) -ola of the catalogsin the same order as befor&he regions and
al'(y)\ 6 times of observation are selected in order that the seismic

activity is stationary, defined by the independenc&afith
time, as we have explained, and this means that no after-
shock sequence predominates in the seismicity of the region
(rather, small aftershock sequences superpose to provide the
‘observed uniform raje When this is not the casg.e., for

ery large aftershock activifyour analysis is still valid, but

he scaling with the mean rate has to be replaced by a scaling
with the instantaneous raféQ].

For all the regions andJ, values shown in Fig. 1, a

*Electronic address: alvaro.corral@uab.es maximume-likelihood estimation of the parameters using the

with y the shape parametex,the scale parameteg a cor-
rection to normalizatiorfdue to the truncation of the distri-
bution close to zefp andI'(y) the gamma function. When
0<y<1, f turns out to be a decreasing power law, acceler
ated by the exponential factor for long times.

In this article we study the consequences of this univers
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FIG. 1. (Color onling Scaling plots of the probability distributions, hazard rate functions, and expected residual recurrence times for all
the catalogs analyzed. The values of the occurrence Rates broadly distributed, ranging roughly from 6 ¥to 1 i, so one unit in the
horizontal axis can represent from 1 h to 2 months. The universal scaling functions fitting the data are the ones proposed in the text with the
parameters obtained from the maximum-likelihood estimation; an example of fit outside the scaling region is alsqahlescaled
survivor functions. The distributions are normalized Rar=0.05; therefore, the left part of the distributions does not represent a probability;
nevertheless, we have considered interesting to show it to illustrate the nonuniversal behavior. Times shorter than 2 min are @@t shown.
Rescaled hazard rates. The errors at long times are large, due to poor stétisRescaled expected residual recurrence times. Only mean
values calculated with five or more data are displayed. At long times the errors increase even further in thisstasés e difference
of two large numbers; nevertheless, the gaps between the points and the function are compatible with the énirdhemsn.

rescaled recurrence tim#=Rr, gives y=0.74£0.05, anda  events in the scaling region, i.e., short recurrence times are

=1.23+0.15, which yields a coefficient of variatiotv not considered in the rate.

=1.2. The constant is determined from the normalization The knowledge of the probability distribution of the re-

condition given the minimum value for which the gamma currence times allows one to answer two important questions

distribution holds; for§=R7>0.05,C=1.10+0.10[see Fig.  about the temporal occurrence of earthquakes. First, for a

1(@)]. o ~_ certain region and foM =M, we can study the probability
The results of the parameter estimation are shown in Figger ynit time of an immediate earthquake given that there has

1(a) using the survivor function, which is defined &7)  peen a period- without activity, using the hazard rafe9]

=Prol 7' > 7]=[7D(7')dr’ (where7 is a generic label for ) )

the recurrence time, whilerefers to a particular value of the A7) = Proffr< 7’ < r+d7j7’ > 7] - D(7)

same quantity It is straightforward to obtain that, in our dr S(7)’

case,S(7) should also verify a scaling relatid® 7) =G(R7),

with G(0)=CQ,(#/a), andQ,(6#/a) the complement of the

incomplete gamma functiofl7,18. The total agreement be-

where the symbol |* accounts for conditional probability.
From the previous formulas we get thetr) scales as\(7)

tween these equations and the measured distributions i_'sRh(RT)' with
clear from the data collapse and the fitting curve in the plot, 1 [a\lr gt
for intermediate and long recurrence timés>0.05/R, h(e):ﬂ 9 m-

roughly). The accuracy of the scaling law and the gamma fit
is guaranteed as the seismic activity is stationary in thisThis function turns out to be monotonically decreasing, tend-
range of recurrence times; on the contrary, short times aring as a power law to the value 4 As#— . So, contrary to
usually not free of disturbances of the stationariness, due toommon belief, the hazard does not increase with the elapsed
the triggering of small aftershock sequences, which destrojime since the last earthquake, but just the opposite; this is
the universal scaling behavior. In order to treat all the distri-precisely the more direct characterization of clustering in
butions in the same way, we recalculate the Rtenly for  time, in which the events tend to attract each other. We shall
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refer to this behavior as long-term clustering, as it is presensidual recurrence time can be directly measured with no as-
beyond the short-term clustering of aftershock sequencesumption about their functional form. Following their defini-
[20], with the time scale being set by the rate of stationarytions, these quantities are estimated as

seismic activity(Therefore, although an aftershock sequence

may last for more than 100 years, we still refer to it as short- A7) = M
term clustering, as the rate associated with it will be larger n(r,2)Ar
than the background-seismicity rate in the area considered.

Perhaps more appropriate names would be high-rate cluster- Ei|7i>70(ri - 70)
ing and background-seismicity clusteringn other words, &(m) = W

we predict that stationary seismicity is clustered indepen-

dently of the scale of observation; this clustering is muchwhere n(r, ,) denotes the number of quakes with recur-

less trivial than the clustering due to the increasing of theaence time in the ranger;, ) and the sum ire(7) is com-

rate in aftershock sequences. puted only for earthquakessuch thatr; > 7, (and of course
Also, one can wonder about the expected time until thevi=M.). From the results displayed in Figgbland Xc) it

next earthquake, given that a periaglwithout earthquakes is apparent that in all cases the hazard rate decreases with

(in the spatial area and range of magnitudes consiglév@sl time whereas the expected residual recurrence time in-

elapsed, creases, as we predicted. Although both quantities are well
1 (= approximated by the proposed universal scaling functions,

e(r) = E[7— m|7> 1] = _f (- 7)D(Ddr. we emphasize that their behavior _does not _depend on any
S(70) 7 modeling of the process and in particular it is independent of

Pe gamma parametrization. Moreover, the fact #a$) is

ar from being constant at large times means that the process
is not properly described by a Poisson process, even in the
long-time limit.

. . ot
This function can be referred to as the expected reS|duar
recurrence timg19] and again we find a scaling form for it,
which is g(7p) =e(R7g) /R, with the scaling function

Q..1(6la) On the other hand, the part of the recurrence-time distri-
e(0) = aym - 0. bution that accounts for short timéise., outside the scaling
Y range,R7<0.05) displays a typical behavidi(§) =K,/ '™,

This is an increasing function @, which reaches, again as a and the corresponding functions for the survivor function,
power law, an asymptotic valug§) —a. Therefore, the re- hazard rate, and expected residual return time turn out to be
sidual time until the next earthquake should grow with the G(0) = Ky(K, - 07)
elapsed time since the last one. Notice the counterintuitive 12 a’
behavior that this represents: if we decompose the recurrence
time 7 as r=75+ 7, with 7; the residual time to the next h(a):;’
earthquake, the increase of implies the increase of the K0 = Ola
mean value ofrs, but the mean value of is kept fixed. In
fact, this is just a more dramatic version of the classical _Ks- (1 + @)
waiting-time paradox21-23. - e(6) = Kp- 0%la 0,
For the particular case of earthquakes this is even more
paradoxical, since one would say that the longer the time on@here the constant, and K; depend on the rest of the
has been waiting for an earthquake, the closer it will be, dudlistribution. An example for these functions with=0.2 is
to the fact that as time passes stress increases on the corpdso represented in Fig. 1, showing the appropriate decreas-
sponding fault and the next earthquake becomes more likelyng Or increasing tendency in each case.
(Nevertheless, one needs to distinguish between earthquakesFor the sake of concreteness, let us consider worldwide
on a given fault and earthquakes over a certain prEae  €arthquakes withM=7.5, which occur at a rateR
question was originally put forward by Dawé$ al.[24], who =6 per year, roughly. In the days immediately after one
pointed out that if a lognormal distribution & priori as- ~ event of this type, the expected time to the next ¢aey-
sumed for the recurrence times, the expected residual tim@here in the worlgl is about 2 monthgfor 7=6 days, we
increases with the waiting timeHowever, the increase there haveR7=0.1, ande(0.1) = 1; see Fig. {c)]. If after 2 months
was associated with the update of the distribution parametet§e quake has not come, the expected residual waiting
as the time since the last earthquake, which was taken intéme not only does not decrease but increases to 2.2 months
account in the estimation, increased; we deal with a differenfe(1) =1.1; this would lead to 4.2 months between both
concept of increasing residual timeSornette and Knopoff event3, and if the elapsed time reached 1 yéahich is
[3] showed that the increas@r decreasedepends com- unlikely but not impossiblg the expected residual time
pletely on the election of the distribution, and studied thewould further increase to 2.4 monthg(6)=1.2]. In the
properties of a number of them. We now will see that thesame way, the hazard rate would drop from 0.7 to 0.5 and to
observational data provide direct evidence against the simple.4 month* [h(6) =1.4, 1, and 0.8F respectively. The same
picture of the next earthquake approaching in time. process is reproduced at all magnitude and spatial scales in a
Indeed, our mathematical predictions can be contrasteself-similar manner. An intuitive explanation of this phenom-
with the catalogs; both the hazard rate and the expected renon is that when the elapsed time since the last earthquake
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is large, the system enters into a long “drought period” intext of renewal theory, their use is totally valid beyond that
which the recurrence time is likely to be very large. Notice,simple case.

however, that there is no fundamental difference between The universality of this behavior demands further expla-
these drought periods and the rest of recurrence times, siné&tion; nevertheless, it suggests the existence of a simple
all of them are governed by the same smooth distribution. ["€chanism in which, as time passes, the variable that trig-

addition, the magnitude of the subsequent event does n§ErS rupture runs away from the rupture threstiok aver-

increase with the waiting time, rather, it seems to be indef"ge' The “excursions” of this variable would keep the

pendent of if25). memory of the last event s_tored _in the system up to very long
One may wonder if our results may arise as a conset-ImeS to generate theegative agingbserved,

. The considerations reported here should be taken into ac-
guence of some art_|fact of the procedure or of the data. Rount by any research regarding earthquake-occurrence mod-
fact our procedure is extr_emely robust in order to face th_eeling [26,27 and predictability{28—31. Finally, in order to
important problem of the incompleteness of the catalogs inyccqunt for the self-similarity of these processes, the concept
magnitude, space, and time, as we allow a great variation ig¢ ge|f.organized criticality provides the most appealing
the ranges of these variables, i.e., minimum magnitde 3 mework up to now32.
spatial extent, and different time windows. The fact that we
obtain the same results for a wide variety of catalogs, for an This author has benefited a lot from the original perspec-
enormous range of spatial scales, for magnitude thresholds/es and deep insights of the late Per Bak. The author also
ranging from 1.5 to 7.5, and for time windows from 2 yearsthanks M. Bogufia, D. Sornette, the Ramoén y Cajal program
(not in the plot$to 74 years, should make it clear that we areof the Spanish MCyT, and all the people at the Statistical
dealing with a genuine physical phenomenon. Physics Group of the Universitat Autonoma de Barcelona, as

Let us stress as well that these results are completelyell as those institutions that have made their catalogs avail-
model-free, i.e., they do not depend on any preassumeable on the internet. Finally, let us mention Grant No.
model of seismic occurrence. In particular, although theBFM2003-06033(MCyT) and Grant No. 2001-SGR-00186
functions we define and measure are well known in the con(DGRGQ.
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