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The existence of a slowly always decreasing probability density for the recurrence times of earthquakes in
the stationary case implies that the occurrence of an event at a given instant becomes more unlikely as time
since the previous event increases. Consequently, the expected waiting time to the next earthquake increases
with the elapsed time, that is, the event moves away fast to the future. We have found direct empirical evidence
of this counterintuitive behavior in two worldwide catalogs as well as in diverse regional catalogs. Universal
scaling functions describe the phenomenon well.
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Many probability distributions have been proposed to ac-
count for the recurrence time of earthquakes[1–5], which is
the time interval between successive earthquakes in a certain
region. Using a procedure similar to that of Baket al., where
aftershocks and mainshocks are considered together as a part
of essentially one unique process[6–9], but looking at the
recurrence times in a single region rather than at a mixture of
different subregions and taking care about the temporal het-
erogeneities of seismicity, we have determined that a univer-
sal scaling law describes the probability densityDstd of the
recurrence time[10,11]. In this way, for events of magnitude
M above a certain thresholdMc in a given spatial area
(whose limits do not need to depend on the tectonic back-
ground), Dstd scales with the rate of seismic activityR in the
area as

Dstd = RfsRtd,

whereR is defined as the mean number of earthquakes(with
M ùMc) per unit time, and is considered to be independent
of time, in principle(in other words, we study the case of
stationary seismic activity[12]). The previous scaling is in
fact the hallmark of the self-similarity of seismicity in the
space-time-magnitude domain. Interestingly, note that the ef-
fect of raising the thresholdMc and a subsequent rescaling of
t with R is analogous to a renormalization-group transforma-
tion [13].

The functionf is a universal scaling function, and among
several possible choices, the best fit is obtained from a(trun-
cated) gamma distribution,

fsud =
C

aGsgd
Sa

u
D1−g

e−u/a,

with g the shape parameter,a the scale parameter,C a cor-
rection to normalization(due to the truncation of the distri-
bution close to zero), andGsgd the gamma function. When
0,g,1, f turns out to be a decreasing power law, acceler-
ated by the exponential factor for long times.

In this article we study the consequences of this universal

behavior on the time evolution of the seismic hazard and on
the expected residual time to the next earthquake. We ana-
lyze many regions and magnitude-threshold values from two
worldwide catalogs[the NEIC-PDE and the Significant
Earthquake Database from NOAA at the National Earth-
quake Information Center(NEIC) [14]] and from several re-
gional catalogs[Southern California, Japan, New Zealand,
New Madrid (USA), the Iberian Peninsula, and the British
Isles[15]]. Each analyzed region is delimited by two merid-
ians and two parallels[16], with linear size spanning from
0.16° (about 18 km) to the whole globes,203103 kmd,
covering a large variety of tectonic environments, whereas
the considered magnitudes range from larger than 1.5 to
larger than 7.5(this is about a factor 109 in the minimum
released energy).

Except for a 360°3180° region, which covers the en-
tire globe, the rest of the regions are defined by a window
of L degrees in longitude andL degrees in latitude. The
coordinatessx,yd of the west-south corner of these regions
can be obtained from the vectorskx,kyd in Fig. 1’s labels as
x=xmin+kxL, y=ymin+kyL, with sxmin,ymind=s−180° , −90°d,
(2123°, 30°), (127°, 27°), (160°, 260°), (291°, 35°),
(220°, 30°), and (210°, 45°) for the worldwide, Southern
California, Japan, New Zealand, New Madrid, Iberian Pen-
insula, and British Isles catalogs, respectively. The periods of
study are(in yearsA.D. including the last one) 1973–2002 for
the NEIC catalog, 1897–1970 for the NOAA one, 1988–
1991, 1995–1998, and 1984–2001 for Southern California
(denoted as SC88, SC95, and SC84), and 1995–1998, 1996–
2001, 1975–2002, 1993–1997, and 1991–2001, for the rest
of the catalogs(in the same order as before). The regions and
times of observation are selected in order that the seismic
activity is stationary, defined by the independence ofR with
time, as we have explained, and this means that no after-
shock sequence predominates in the seismicity of the region
(rather, small aftershock sequences superpose to provide the
observed uniform rate). When this is not the case(i.e., for
very large aftershock activity) our analysis is still valid, but
the scaling with the mean rate has to be replaced by a scaling
with the instantaneous rate[10].

For all the regions andMc values shown in Fig. 1, a
maximum-likelihood estimation of the parameters using the*Electronic address: alvaro.corral@uab.es
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rescaled recurrence timeu=Rt, gives g=0.74±0.05, anda
=1.23±0.15, which yields a coefficient of variationcv
.1.2. The constantC is determined from the normalization
condition given the minimum value for which the gamma
distribution holds; foru=Rt.0.05,C=1.10±0.10[see Fig.
1(a)].

The results of the parameter estimation are shown in Fig.
1(a) using the survivor function, which is defined asSstd
;Probft8.tg=et

`Dst8ddt8 (wheret8 is a generic label for
the recurrence time, whilet refers to a particular value of the
same quantity). It is straightforward to obtain that, in our
case,Sstd should also verify a scaling relationSstd=GsRtd,
with Gsud=CQgsu /ad, and Qgsu /ad the complement of the
incomplete gamma function[17,18]. The total agreement be-
tween these equations and the measured distributions is
clear from the data collapse and the fitting curve in the plot,
for intermediate and long recurrence times(t.0.05/R,
roughly). The accuracy of the scaling law and the gamma fit
is guaranteed as the seismic activity is stationary in this
range of recurrence times; on the contrary, short times are
usually not free of disturbances of the stationariness, due to
the triggering of small aftershock sequences, which destroy
the universal scaling behavior. In order to treat all the distri-
butions in the same way, we recalculate the rateR only for

events in the scaling region, i.e., short recurrence times are
not considered in the rate.

The knowledge of the probability distribution of the re-
currence times allows one to answer two important questions
about the temporal occurrence of earthquakes. First, for a
certain region and forM ùMc, we can study the probability
per unit time of an immediate earthquake given that there has
been a periodt without activity, using the hazard rate[19]

lstd ;
Probft , t8 ø t + dtut8 . tg

dt
=

Dstd
Sstd

,

where the symbol “u” accounts for conditional probability.
From the previous formulas we get thatlstd scales aslstd
=RhsRtd, with

hsud =
1

aGsgd
Sa

u
D1−g e−u/a

Qgsu/ad
.

This function turns out to be monotonically decreasing, tend-
ing as a power law to the value 1/a asu→`. So, contrary to
common belief, the hazard does not increase with the elapsed
time since the last earthquake, but just the opposite; this is
precisely the more direct characterization of clustering in
time, in which the events tend to attract each other. We shall

FIG. 1. (Color online) Scaling plots of the probability distributions, hazard rate functions, and expected residual recurrence times for all
the catalogs analyzed. The values of the occurrence ratesR are broadly distributed, ranging roughly from 6 yr−1 to 1 h−1, so one unit in the
horizontal axis can represent from 1 h to 2 months. The universal scaling functions fitting the data are the ones proposed in the text with the
parameters obtained from the maximum-likelihood estimation; an example of fit outside the scaling region is also shown.(a) Rescaled
survivor functions. The distributions are normalized forRtù0.05; therefore, the left part of the distributions does not represent a probability;
nevertheless, we have considered interesting to show it to illustrate the nonuniversal behavior. Times shorter than 2 min are not shown.(b)
Rescaled hazard rates. The errors at long times are large, due to poor statistics.(c) Rescaled expected residual recurrence times. Only mean
values calculated with five or more data are displayed. At long times the errors increase even further in this case, as«std is the difference
of two large numbers; nevertheless, the gaps between the points and the function are compatible with the error bars(not shown).
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refer to this behavior as long-term clustering, as it is present
beyond the short-term clustering of aftershock sequences
[20], with the time scale being set by the rate of stationary
seismic activity.(Therefore, although an aftershock sequence
may last for more than 100 years, we still refer to it as short-
term clustering, as the rate associated with it will be larger
than the background-seismicity rate in the area considered.
Perhaps more appropriate names would be high-rate cluster-
ing and background-seismicity clustering.) In other words,
we predict that stationary seismicity is clustered indepen-
dently of the scale of observation; this clustering is much
less trivial than the clustering due to the increasing of the
rate in aftershock sequences.

Also, one can wonder about the expected time until the
next earthquake, given that a periodt0 without earthquakes
(in the spatial area and range of magnitudes considered) has
elapsed,

«st0d ; Eft − t0ut . t0g =
1

Sst0dEt0

`

st − t0dDstddt.

This function can be referred to as the expected residual
recurrence time[19] and again we find a scaling form for it,
which is «st0d=esRt0d /R, with the scaling function

esud = ag
Qg+1su/ad
Qgsu/ad

− u.

This is an increasing function ofu, which reaches, again as a
power law, an asymptotic valueesud→a. Therefore, the re-
sidual time until the next earthquake should grow with the
elapsed time since the last one. Notice the counterintuitive
behavior that this represents: if we decompose the recurrence
time t as t=t0+t f, with t f the residual time to the next
earthquake, the increase oft0 implies the increase of the
mean value oft f, but the mean value oft is kept fixed. In
fact, this is just a more dramatic version of the classical
waiting-time paradox[21–23].

For the particular case of earthquakes this is even more
paradoxical, since one would say that the longer the time one
has been waiting for an earthquake, the closer it will be, due
to the fact that as time passes stress increases on the corre-
sponding fault and the next earthquake becomes more likely.
(Nevertheless, one needs to distinguish between earthquakes
on a given fault and earthquakes over a certain area.) The
question was originally put forward by Daviset al. [24], who
pointed out that if a lognormal distribution isa priori as-
sumed for the recurrence times, the expected residual time
increases with the waiting time.(However, the increase there
was associated with the update of the distribution parameters
as the time since the last earthquake, which was taken into
account in the estimation, increased; we deal with a different
concept of increasing residual time.) Sornette and Knopoff
[3] showed that the increase(or decrease) depends com-
pletely on the election of the distribution, and studied the
properties of a number of them. We now will see that the
observational data provide direct evidence against the simple
picture of the next earthquake approaching in time.

Indeed, our mathematical predictions can be contrasted
with the catalogs; both the hazard rate and the expected re-

sidual recurrence time can be directly measured with no as-
sumption about their functional form. Following their defini-
tions, these quantities are estimated as

lstd =
nst,t + Dtd
nst,`dDt

,

«st0d =
Si uti.t0

sti − t0d

nst0,`d
,

where nst1,t2d denotes the number of quakes with recur-
rence time in the rangest1,t2d and the sum in«st0d is com-
puted only for earthquakesi such thatti .t0 (and of course
M ùMc). From the results displayed in Figs. 1(b) and 1(c) it
is apparent that in all cases the hazard rate decreases with
time whereas the expected residual recurrence time in-
creases, as we predicted. Although both quantities are well
approximated by the proposed universal scaling functions,
we emphasize that their behavior does not depend on any
modeling of the process and in particular it is independent of
the gamma parametrization. Moreover, the fact that«st0d is
far from being constant at large times means that the process
is not properly described by a Poisson process, even in the
long-time limit.

On the other hand, the part of the recurrence-time distri-
bution that accounts for short times(i.e., outside the scaling
range,Rt,0.05) displays a typical behaviorfsud=K1/u1−a,
and the corresponding functions for the survivor function,
hazard rate, and expected residual return time turn out to be

Gsud = K1sK2 − ua/ad,

hsud =
1

K2u1−a − u/a
,

esud =
K3 − u1+a/s1 + ad

K2 − ua/a
− u,

where the constantsK2 and K3 depend on the rest of the
distribution. An example for these functions witha.0.2 is
also represented in Fig. 1, showing the appropriate decreas-
ing or increasing tendency in each case.

For the sake of concreteness, let us consider worldwide
earthquakes withM ù7.5, which occur at a rateR
=6 per year, roughly. In the days immediately after one
event of this type, the expected time to the next one(any-
where in the world) is about 2 months[for t=6 days, we
haveRt=0.1, andes0.1d.1; see Fig. 1(c)]. If after 2 months
the quake has not come, the expected residual waiting
time not only does not decrease but increases to 2.2 months
[es1d.1.1; this would lead to 4.2 months between both
events], and if the elapsed time reached 1 year(which is
unlikely but not impossible), the expected residual time
would further increase to 2.4 monthsfes6d.1.2g. In the
same way, the hazard rate would drop from 0.7 to 0.5 and to
0.4 month−1 [hsud.1.4, 1, and 0.85], respectively. The same
process is reproduced at all magnitude and spatial scales in a
self-similar manner. An intuitive explanation of this phenom-
enon is that when the elapsed time since the last earthquake
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is large, the system enters into a long “drought period” in
which the recurrence time is likely to be very large. Notice,
however, that there is no fundamental difference between
these drought periods and the rest of recurrence times, since
all of them are governed by the same smooth distribution. In
addition, the magnitude of the subsequent event does not
increase with the waiting time, rather, it seems to be inde-
pendent of it[25].

One may wonder if our results may arise as a conse-
quence of some artifact of the procedure or of the data. In
fact our procedure is extremely robust in order to face the
important problem of the incompleteness of the catalogs in
magnitude, space, and time, as we allow a great variation in
the ranges of these variables, i.e., minimum magnitudeMc,
spatial extentL, and different time windows. The fact that we
obtain the same results for a wide variety of catalogs, for an
enormous range of spatial scales, for magnitude thresholds
ranging from 1.5 to 7.5, and for time windows from 2 years
(not in the plots) to 74 years, should make it clear that we are
dealing with a genuine physical phenomenon.

Let us stress as well that these results are completely
model-free, i.e., they do not depend on any preassumed
model of seismic occurrence. In particular, although the
functions we define and measure are well known in the con-

text of renewal theory, their use is totally valid beyond that
simple case.

The universality of this behavior demands further expla-
nation; nevertheless, it suggests the existence of a simple
mechanism in which, as time passes, the variable that trig-
gers rupture runs away from the rupture threshold(on aver-
age). The “excursions” of this variable would keep the
memory of the last event stored in the system up to very long
times to generate thenegative agingobserved.

The considerations reported here should be taken into ac-
count by any research regarding earthquake-occurrence mod-
eling [26,27] and predictability[28–31]. Finally, in order to
account for the self-similarity of these processes, the concept
of self-organized criticality provides the most appealing
framework up to now[32].
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